20 resultados para Neuroprotection

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the neuroprotection of mild hypothermia, applied in different moments, in temporary focal cerebral ischemia in rats. Methods: Rats was divided into Control (C), Sham (S), Ischemic-control(IC), Pre-ischemic Hypothermia (IH1), Intra-ischemic Hypothermia (IH2), and Post-ischemic Hypothermia (IH3) groups. Morphometry was performed using the KS400 software (Carl Zeiss (R)) in coronal sections stained by Luxol Fast Blue. Ischemic areas and volumes were obtained. Results: Statistically, blue areas showed difference for C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.01; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH vs. IH2 (p=0.39; p=0.85; p=0.63). Red areas showed difference between C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.009; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH1 vs. IH2 (p=0.48; p=0.27; p=0.68). Average ischemic areas and ischemic volumes showed difference between IC vs. IH1 and IC vs. IH2 (p=0.0001 and p=0.0011), and no difference between IC vs. IH3 and IH1 vs. IH2 (p=0.57; p=0.79). Conclusion: Pre-ischemic and intra-ischemic hypothermia were shown to be similarly neuroprotective, but this was not true for post-ischemic hypothermia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurogenic neuroprotection elicited by deep brain stimulation is emerging as a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the fastigial nucleus, but not dentate nucleus, has been shown to reduce the volume of focal infarction. Protection of neural tissue is a rapid intervention that has a relatively long-lasting effect, rendering fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application. We review some of the main findings of animal experimental research from a clinical perspective. Results: Although the complete mechanisms of neuroprotection induced by FNS remain unclear, important data has been presented in the last two decades. The acute effect of electrical stimulation of the fastigial nucleus is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade. A better understanding of the cellular and molecular mechanisms underlying neurogenic neuroprotection by stimulation of deep brain nuclei, with special attention to the fastigial nucleus, can contribute toward improving neurological outcomes in ischemic brain insults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-Daspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings: Bradykinin at 10 nM and 1 mu M concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059,showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. Conclusions: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The onset and early course of schizophrenia is associated with subtle loss of grey matter which may be responsible for the evolution and persistence of symptoms such as apathy, emotional blunting, and social withdrawal. Such 'negative' symptoms are unaffected by current antipsychotic therapies. There is evidence that the antibiotic minocycline has neuroprotective properties. We investigated whether the addition of minocycline to treatment as usual (TAU) for 1 year in early psychosis would reduce negative symptoms compared with placebo. In total, 144 participants within 5 years of first onset in Brazil and Pakistan were randomised to receive TAU plus placebo or minocycline. The primary outcome measures were the negative and positive syndrome ratings using the Positive and Negative Syndrome Scale. Some 94 patients completed the trial. The mean improvement in negative symptoms for the minocycline group was 9.2 and in the placebo group 4.7, an adjusted difference of 3.53 (s.e. 1.01) 95% CI: 1.55, 5.51; p < 0.001 in the intention-to-treat population. The effect was present in both countries. The addition of minocycline to TAU early in the course of schizophrenia predominantly improves negative symptoms. Whether this is mediated by neuroprotective, anti-inflammatory or others actions is under investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf extract of Centella asiatica has been used as an alternative medicine for memory improvement in the Indian Ayurvedic system of medicine for a long time. Although several studies have revealed its effect in ameliorating the cognitive impairment in rat models of Alzheimer's disease, the molecular mechanism of C. asiatica on neuroprotection still remains unexplained. In this study, we investigated the effects of C. asiatica water extract on activity of subtypes of phospholipase A(2) (PLA(2)) in primary cultures of rat cortical neurons and quantified by HPLC a possible molecule responsible for the activity. The cPLA(2) and sPLA(2) activities were inhibited in vitro by asiaticoside present in the water extract of C. asiatica. This extract may be a candidate for the treatment of neurodegenerative processes because of its pharmacological activity in the brain and its low toxicity, as attested by its long popular use as a natural product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.